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Dobrushin States for Classical Spin Systems 
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We consider a classical spin system on the hypercubic lattice with a general 
interaction of the form 

x ,  y :  x A y ~ A  

Ix  - y l  =" ! 

where sx~ { -  1, +1} are the spin variables, fl is the inverse temperature, h is 
the magnetic field, and 2A are translation-invariant coupling constants satisfying 
2A--0 if diam A > 1. No symmetry relating the configurations s =  {sx} and 
- s =  {-sx} is assumed. In dimension d>_.3, we construct low-temperature 
states which break the translation invariance of the system by introducing so- 
called Dobrushin boundary conditions which force a horizontal interface into 
the system. In contrast to previous constructions, our methods work equally 
well for complex interactions, and should therefore be generalizable to quantum 
spin systems. 

KEY WORDS: Dobrushin states; interfaces; surface tension; Pirogov-Sinai 
theory; complex interactions. 

1. INTRODUCTION 

In this paper, we discuss the construction of non-translation-invariant states 
for classical lattice systems which have contour representations without 
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positive weights. Our principal motivation for studying such classical 
models is that the contour representations of many quantum systems have 
non-positive weights. In ref. [BCF96], we combine the methods of this 
paper with those of refs. [BKU96] and [DFF96] to construct non-transla- 
tion-invariant states for certain quantum systems. 

The methods of this paper rely heavily on the results of refs. [BF85], 
[HKZ88] and [BI92], which in turn are based on the classic works of 
Dobrushin [ Dob72 ] and Gallavotti [ Gal72 ], who developed convergent 
expansions for the Ising magnet at low temperatures: the Gallavotti expan- 
sion established instability of the interface in the two-dimensional Ising 
magnet, while the Dobrushin expansion established stability of the inter- 
face, and hence the existence of non-translation-invariant states, in the 
three-dimensional magnet. Briemont and Fr6hlich [BF85] further 
developed interface and walk expansions, devising in particular expansions 
in terms of "decorated" interfaces. Holicky, Koteck~, and Zahradnick 
[HKZ88] used Pirogov-Sinai theory [PS75] in the form developed in 
ref. [Zah84] to extend the Dobrushin analysis to models with no sym- 
metry rela.ting the two phases separated by the interface. Finally, Borgs and 
Imbrie [BI92] analyzed finite-size scaling effects in systems with dynami- 
cally generated interfaces with non-positive, but real contour weights, using 
their earlier work [BI89] on models with complex contour weights. See 
also ref. [Zah88] for earlier work on systems with complex interactions. 
The work presented here represents, to some extent, a combination, sim- 
plification and extension of much of the above work on Dobrushin states. 
In particular, we derive expansions for both the surface tension and expec- 
tation values in classical models with complex contour weights in which the 
phases are not related by symmetry. These features also occur in the quan- 
tum models we treat in ref. [ BCF96]. 

The non-positivity of the weights leads to marked technical differences 
from the standard treatment. In theories with positive weights, control of 
the expansion for the surface tension automatically implies control of the 
probability distribution of the interfaces and hence control of the expecta- 
tion values. Explicitly, standard Pirogov-Sinai theory of interfaces with 
positive weights (see e.g. ref. [ HKZ88 ]) provides a representation of expec- 
tation values as sums over surfaces of conditional expectation values times 
the probabilities of these surfaces. In that case, one can obtain bounds on 
the expectation values by first deriving bounds on the conditional expectations 
and then resumming the probabilities. Here, in the absence of a probabilistic 
interpretation, we require some new techniques to control expectation 
values, in particular to establish exponential clustering in directions 
orthogonal to the interface. To this end, we will combine the cluster expan- 
sion for the complex surface weights and the expansion for the conditional 
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expectations into a full-fledged cluster expansion for the non-translation- 
invariant state. See Section 6 for details. 

While our methods and results apply to much more general models, 
for simplicity of exposition we formulate them here for a relatively simple 
model which shares two relevant features with more general models: 
namely, the contour weights are not necessary positive and there is no sym- 
metry relating the two phases separated by the interface. The model we 

1 consider is a classical spin system on the l a t t i c e  7/ld/2 = 7/d--[ - (1, 2, ' " ,  �89 with 
spin configurations s" Zdl/2 --~ { - -  l ,  -~- 1 }"  x ~ S x ,  and formal Hamiltonian 

H =  y', Hx(s) (1.1)  
x 

where Hx(s) is a general complex-valued translation-invariant function of s. 
Here, we assume that the main contribution to Hx(s) comes from an Ising 
interaction, but allow for small corrections whose main task is to break the 
+ / -  symmetry of the Ising Hamiltonian. For concreteness, we set 

2A 
Z Isx-sel-hsx+ ~ IAI 1-I Sy (1.2) 

n x ( S )  =- '4  y. l x -  y l=  l A" xEA,  y E A  
d i a m  A ~< 1 

where the first sum is over the 2d nearest neighbors of x, 

diam A "= }-" max [x~, - y~, I (1.3)  
x, yEA  , u - - I  ..... d 

fl is the inverse temperature, h is the magnetic field, and 2A are complex- 
valued coupling constants. Note that with this definition, we have absorbed 
the inverse temperature into the Hamiltonian. Furthermore, we will assume 
that the norm 

IIRe&ll= ~ IReX~l (1.4) 
A ' x ~ A  

is small compared to the real part of fl, which will imply that the corre- 
sponding contour model has small activities for low temperatures. 

Before describing our new results on non-translation-invariant states, 
let us briefly review what is known about translation-invariant Gibbs states 
of the model with Hamiltonian (1.1). Under the condition (i.4), one can 
apply the methods of Pirogov-Sinai theory in the form derived by Borgs and 
Imbrie [BI89]. Defining suitable metastable free energies fq =fq(fl, 2, h), 
q =  __ l, one obtains a convergent cluster expansion for the state with 
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constant boundary condition q whenever Re fq = min{ Re f + ,  Re f _  }; in 
this case, one says that the boundary condition q is stable. In particular, on 
the hypersurface where Re f+  = Re f _ ,  the cluster expansions for both the 
state with + and the state with - boundary conditions converge, and 
both boundary conditions are said to be stable. Whenever the boundary 
condition q is stable, one obtains existence of the infinite-volume limit, 
together with translation invariance and exponential clustering for this 
limit. For periodic boundary conditions, one also obtains the existence of 
the thermodynamic limit and a proof that this limit is an equal weight 
convex combination of the states that are stable at the given values of fl, 
2 and h. Note that one finds equal weights even if there is no symmetry 
relating the two phases. While many models with real interactions allow for 
a proof of the fact that all translation invariant states are convex combina- 
tions of the corresponding stable states, such a statement is not proven for 
complex interactions. 

The goal of this paper is the construction of infinite-volume states 
which break the translation invariance of the Hamiltonian. In particular, 
assuming Re f+  = Re f _ ,  we show the existence of the thermodynamic 
limit Of states with so-called Dobrushin boundary conditions, i.e. boundary 
conditions which introduce an interface parallel to one of the lattice hyper- 
planes. The resulting infinite-volume states exhibit exponential clustering, 
are translation invariant in directions parallel to the interface and break 
translation invariance in the direction orthogonal to the interface. Further- 
more, these non-translation invariant infinite-volume states approach the 
corresponding translation-invariant pure states at distances asymptotically 
far from the interface; the rate of approach is exponential in the distance 
from the interface. 

The organization of this paper is as follows. In Section 2, we define 
our notation and state our results. In Sections 3 and 4, we develop the 
expansions for the partition function and the states in a system with 
uniform boundary conditions, modifying the standard treatment where 
necessary. These results are then used in Sections 5 and 6 to develop expan- 
sions for the surface tension and the states in systems with Dobrushin 
boundary conditions. 

2. DEFINITIONS AND STATEMENT OF RESULTS 

Before stating our results, we must define the model in a finite volume 
and specify our boundary conditions. Given a finite box 

A={x Zf/,I ..... a} (2.1) 
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let A c=  Z a/2\A and let s a be the collection of spin variables {sx} x~a. We 
replace the Hamiltonian (1.1) by the finite-volume Hamiltonian 5 

Ha(sa  Isar = ~ Hx(s) (2.2) 
x :  d i s t ( x ,  A )  ~< I 

where dist(x, A) is the f~-d is tance  between x and A. One then defines the 
partition function Z , ( A )  and finite-volume state ( . ) a  with boundary con- o" 

dition a as 

and 

Z~(A) = ~ e -ItA(`AI~A~ (2.3) 
s A 

1 
( A )  a - A(s) e -tta(*a I*Ac) (2.4) 

o" Z,,(A) 

where -A = A(s) is a function depending only on the spins in A. Of par- 
ticular interest for us are constant boundary conditions, ax = + or ax = , 
and Dobrushin boundary conditions 

(+_) f +  if X l > 0  
(2.5) 

ax = ] . -  if x ~ < 0  

where x~ is the first component  of x ~ ga/2 . The corresponding partition 
functions will be denoted Z+(A) ,  Z _ ( A )  and Z + _ ( A ) ,  and the corre- 
sponding states by ( . ) a  ( . ) a  and ( . ) a  Note that the choice of a + ,  - -  + - - .  

box A invariant under reflection in the plane x~ = 0, and the exact form of 
the boundary conditions (2.5), are not essential to the analysis in this 
paper, although different choices would substantially complicate the nota- 
tion in Section 5 and 6. 

Before stating our main result, we recall the known result for transla- 
tion-invariant states ( . ) •  In the following, we use the symbol tx(A) for 
the translation of a local observable A by a vector x ~ Z a, where, as usual, 
a local observable is a bounded function A(s) that depends only on a finite 
number of spin variables sx. 

T h e o r e m  2.1 [BI89].  Let di>2,  and let e•  be the "ground 
state energies per site" e •  1). Then there exist constants 

5 Note that the condition dist(x, A) ~< 1 in (2.2) stems from the constraint diam A ~< 1 in the 
expression (1.2) for Hx. If we instead used diam A ~< R in (1.2), we would have dist(x, A ) ~< R 
in (2.2). 
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t o<  oo, e>O and c <  ~ ,  and C ~ functions f• "metastable free 
energies", such that the following statements hold provided 

v = Re f l -  c IIRe 211 ~ ro (2.6) 

(i) 

If+(h)-e• + 
d 
-~( f  •177 e-(*-*0) (2.7) 

(ii) If Re f,,,(h) =fo(h)  - min { Re f +  (h), Re f _  (h) }, then the 

(A)m= lim ( A )  a (2.8) 
A --~Z d 

exists for all local observables A, is translation invariant, and 

I(sx),,, - mi ~< e -(~-*~ (2.9) 

(iii) For all local observables A and B, there exists a constant 
CAB < O0 such that 

[(Atx(B)),.-(A),. (B),.[ ~ CAne -~('-~~ I~l (2.10) 

provided Re f,,,( h ) = fo(h ). 

(iv) Let ( . ) a  be the finite-volume state with periodic boundary 
per 

conditions. Then the limit 

( A ) w , =  lim ( A )  A 
A .--* Z d per  

(2.11) 

exists for all local observables A, and 

1 
( A ) ~ , - I Q I  ~ (A), , ,  (2.12) 

m ~ Q  

where A = { m ] Re fro(h) = fo(h) }. In particular, 

(A)Pe~=�89 +(A)_) (2.13) 

provided 

Re f+(h)=Re f_(h) (2.14) 

The main result of this paper is the following analogue of Theorem 2.1 
for nontranslation-invariant states. 
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Theorem 2.2. 
assume (2.14). Let 

Let r, to, e and f •  be as in Theorem 2.1, and 

Then 

A ( L .c , L ) =  { x ~ 7/ al /2 [ - L .c < x , <L_c, - L < x i < L V i >~ 2} (2.15) 

(i) The limit 

( A ) +  = lim lim ( A )  a(t'l'L) 
L---*  oo  L.I .  --* o o  

(2.16) 

exists for all local observables A and is translation invariant in the horizon- 
tal directions (i.e., in the directions orthogonal to the l-direction). 

(ii) For all local observables A, there exist constants CA < ~z, such 
that 

I ( t x ( A ) ) + _  - ( A ) + I  ~< Cae - `~- '~  (2.17) 

if x~ > O, and 

I ( t x ( A ) ) + _  - ( A ) _ I  <~ CAe -"(~-~~ Ix'l (2.18) 

ifx~ <0.  

(iii) 
such that 

For all local observables A and B there exist constants Can < 

I ( A t x ( B ) ) + _ - ( A ) + _ ( t x ( B ) ) + _ l  <~ Case  -~(~-~~ (2.19) 

3. THE CLUSTER EXPANSION FOR Z •  

In this section and the next, we review the cluster expansions for the 
translation-invariant partition functions Z+(A) and states ( . )  • (see 
ref. [BI89] and [BK90],  Appendix A for details). Then in the following 
two sections, these expansions will be used to derive analogous quantities 
for the non-translation-invariant system. We begin by rewriting Zq(A)  
(q = + 1) as the partition function of a suitable contour model. 

Given a box of the form (2.1), we let A =  {x  ~ Z d/2ldist(x, A)~<1},  
and let V = V(A) c R a be the union of all closed unit cubes c(x) with centers 
x e A_ Given a configuration s a ~ { -  1, 1 } "~ and the boundary condition q, 
we extend sa to A by setting sx = q if x ~ , t \A ;  we denote the resulting con- 
figuration by s~ = s~(sa,  q). We define if,,, = V,,(s,~) c V as the union of all 
cubes c ( x ) c  V for which s x = m .  Finally, the set F - F ( s z )  is defined as 
V+ ~ V_, and the "ground state regions" V_+ = V+(s~) are defined as 
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V+\F. In order to specify the configuration s~ uniquely, one has to decide 
which components of V\F are part of V+ and which are part of V_. To 
this end, one introduces contours with labels. 

Given a configuration s~, the contours corresponding to sa are 
defined as pairs Y= (supp Y, 0c), where supp Y c  R a is a connected compo- 
nent 6 of F, and the function 0c is an assignment of a label 0c(c) ~ { - 1, + 1 } 
to each cube that touches supp Y. (As usual, we say that two subsets of R a 
touch if their intersection is nonempty.) The function 0c is constructed so 
that 0c(c)= m if c c P,,,. Note that the labels of contours corresponding to 
a configuration s z are matching in the sense that the labels 0c(c) are con- 
stant on each component of V\F. 

On the other hand, a given set of contours { Yt ..... Y,,} corresponds to 
some configuration s,r if and only if 

(i) supp Yi C V \ O V  for all i, 

(ii) supp Y~ c~ supp Yj = ~ for i # j, and 

(iii) the labels of Y~,..., Y, are matching. 

We call a set of contours obeying (i) and (ii) a set of  non-overlapping 
contours in V and a set of contours obeying (i)-(iii) a set of  non-overlapping 
contours in V with matching labels, or sometimes just a set of matching 
contours in V. 

In order to rewrite Z+(A) in terms of contours, we assign a weight 
p(Y) to each contour Y= (supp Y, ~). To this end, let s r be the configura- 
tion that is constant on each component of Rd\supp Y and equal to 
o~(c(x)) whenever c(x) is a cube that touches supp Y. Denoting the constant 
configurations o n  7~'1d/2 by g(+), g(x m ) =  - m,  we then define 

p(Y) = exp ( -  ~ (Hx ( s r ) -  e~(~))~ (3.1) 
k x E A "  / 

c(x )  ~ s u p p  Y #  .~I 

where 

e m = H x ( g  ( " ) )  (3.2)  

is the energy per site in the ground state g(m). With this definition, the 
weight of a configuration s~ = s~(sa, q) with contours Y~ ,..., Y, is equal to 

n 

e-n<~A ]q) --- e-e+ IV+le-e_ tr_l I-[ P(Irk) 
k = l  

(3.3) 

6 Note that the edges are not rounded here, which implies that Raksupp Y may have more 
than one finite component. 
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implying that 

Zq(A) = Z e-~+ IV+le-e_ Ir,'_l f i  p(Yk) (3.4) 
{~'~ ..... ~',} k=l 

where the sum goes over all sets of matching contours in V= V(A) with 
external boundary condition q. Here, as in the sequel, the external bound- 
ary condition of a set of contours { Y~,..., Y,} in V is defined as the label 
of the component of V\(supp Y~ w ..- w supp Y,) that touches c3V. 

Remarks. (i) Rewriting Hx(sy) and e~(x)=Hx(g (~(x))) in terms of 
the right hand side of (1.2), it is easy to see that p(Y) does not depend on 
s~ as soon as supp Y n c(x)= ~. 

(ii) F o r  the standard Ising model (corresponding to 2A -- 0), the 
weight of a cbntour Y is simply p(Y) = e -plYj, where I YI is the ( d - 1 ) -  
dimensional area of supp Y. 

(iii) For the more general model (1.2), the third term in (1.2) intro- 
duces t:orrections yielding a weight of the form p(Y) = e  -plYI + o(jlall IYI). As 
a consequence, 

Ip( Y)I ~ < e -"  IYI (3.5) 

where r is given in Theorem 2.1. 

(iv) With a slight abuse of notation, we will use the symbol Zq(V) 
for the partition function Zq(A) if V = V(A), where A is a box of the form 
(2.1) and V(A) is obtained by "fattening" A as described at the beginning 
of this section. We will also need more general volumes V which are unions 
of closed unit cubes, but which cannot be obtained by fattening any A of 
the form (2.1). If V is such a volume and has no holes (in the sense that 
W = R d \  V is a connected subset of Rd), we will use the symbol Zq(V) for 
the contour partition function defined by the right hand side of (3.4). 
Finally, if V is a union of closed unit cubes with holes, Zq(V) is defined by 
requiring that no contour in (3.4) surround the holes of V. From now on, 
this condit ion--as  well as the condition that Y does not touch the bound- 
ary of V~will  be implicit in statements like "Y is a contour in V," or 
"where the sum goes over sets of non-overlapping contours in V." Finally, 
we will often use the notation Zq(V) for the-partition function of a volume 
V which is the interior of a contour, and which is therefore an open set. In 
this case, Zq(V) is defined as Zq(V) where V= Vw a V. 

In order to apply the usual techniques of Mayer expansions for 
abstract polymer systems (see e.g. [ Sei82 ], [ GJ85 ] or [ Bry86 ] ), one needs 
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a representation for Z__+(V) that eliminates the matching condition on con- 
tours. We introduce some notation. For a contour Y with support supp Y, 
we define Int Y as the union of all finite components of Ra\supp Y, 
V(Y) = supp Ywln t  Y, and Ext Y= V\V(Y) .  We use the symbol Int,, Y to 
denote the union of all components of Int Y that carry the label m, 
rn = + 1. We say that Y is an m contour if the label 0t(e)= m for all cubes 
r in Ext Y that touch the support of Y. Finally we say that Y is an external 
contour in the set Y] .... , Y, if there is no contour Y~, i = 1 .... , n, such that 
supp Y c Int Yi. Note that all external contours contributing to Z + ( V )  are 
+ contours, while all external contours contributing to Z _ ( V )  are - con- 
tours. We now resum (3.4) inside Int,, Y for all external contours Y. This 
resummation produces a factor Z,,(Int, ,  Y) for each external Y and each 
m--  +,  and yields the expression 

Zq(V) = ~ e-lExtl~' 1-[ P(Y~) 1I Z,,,(Int,,, Y~) (3.6) 
{ YI ..... Yk} ext i l - - - -  m - - -  + 1 

where the sum goes over sets { Y~ ,..., Yk} ext of mutually external q contours 
and Ext = V\( V(Y~) w ... w V(Yk)). Next, we divide each Z,,,(Int,,, Yi) by 
Zq(Int,,, Y~) and multiply it back in the form (3.6), a standard device in 
Pirogov-Sinai theory (see e.g. [ PS75 ] and [Zah84]).  Iterating this pro- 
cess, one obtains the desired representation 

Zq( V)=e-r IVI ~ f i  Kq( Yi) (3.7) 
{r~ ..... r.} i=l 

where the sum now goes over sets of non-overlapping q contours in V 
without any matching condition, and 

Zm(Intmr) I-I,,, Zq(IntmY) (3.8) 

Applied to the model (1.2), the key estimate of [BI89], see also 
[BK90],  Appendix A, is the following: 

P r o p o s i t i o n  3.1 [BI89], [BK90].  Let r, to, f+(h) andf0(h) be as 
in Theorem 2.1. If Re fq(h) = f o ( h ) ,  then 

[Kq( Y)[ ~<e - ( ' -  ~ Irl (3.9) 

for all m contours Y, and 

fq(h) = - lim 1 v-. zd [ -~  log Zq(V) (3.10) 
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where the limit is taken through any sequence of volumes such that IOVI/ 
IVl--,0. 

Henceforth, we will assume that we are in the coexistence regime, i.e. 
the regime where the condition (2.14) is satisfied. Then we can use Proposi- 
tion 3.1 to obtain convergent expansions for the partition functions Z + ( V )  
and Z_(V) .  The usual Mayer expansion for abstract polymer systems then 
gives the representation 

l o g  Z q ( V ) - ' -  -e• lV[ § ~ ~', 
,=1 Yl ..... r. 

qb~( Y~,..., Y,,) f i  Kq( yk) (3.11) 
n! k--'l 

where the second sum runs over sequences of m contours in V, and 
~bc( Y1,..., Y,) is a combinatoric factor. In terms of the connectivity graph 
G(YI,..., Y~) bn 1,...,n, which has a line between i and j whenever 
supp Yi ~ supp Yj 4: ~ ,  ~c is defined as 

q~c( Y,,..., Y, , )= ~ ( -  1) :(c) (3.12) 
c~ ca r l ..... r,) 

where the sum goes over all connected subgraphs on 1 .... , n, and : (C)  is the 
number of lines in C. The factor ~bc( Y1,-.., Y,) is zero if G( Y1,..., Y,) is not 
a connected graph on 1 ..... n. 

Fixing the set X =  supp Y~ u ... w supp Y, and resumming over all n 
and all sequences of contours that lead to the same set X, we finally get a 
representation for log Zq in terms of connected sets X c •d, henceforth 
called clusters, which are unions of (the supports of) a finite number of 
contours: 

log Zq( V) = -e• l V[ + ~ kq(X) (3.13) 
X 

where the sum goes over all clusters X in V that do not touch the boundary 
a V of V, and 

r n 
kq(X)=  ~ ~ q~c(Y,, ..., Yn) 

n! I-I Kq( Yk) (3.14) 
,,=l r~ ..... r.. k=l 

UI supp Yi-" X 

By the bound (3.9) and the well known properties of the Mayer expansion 
for abstract polymer systems, 

Ikq(X)l <~ e -(~-~ Ix1 (3.15) 
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The representation (3.14) allows us to control the boundary effects. 
Consider a volume V without holes. Let V= V w c3V, and let Vo be the 
union over all cubes in V that do not touch t3 V. Also, for a cluster X, let 
Int X be the union of all finite components of Rd\x ,  let V(X) = X w  Int X 
and let ,~ be the "fattened cluster" consisting of all cubes c(x) in V(X) that 
touch the set X. Making explicit the condition in the sum in (3.13), we 
require that X c  Vo. It then follows from (3.13) and (3.10) that the free 
energy of the phase q may be identified as 

1 
f q ( h ) = e q ( h ) -  ~ I~i  kq(X) (3.16) 

X: c(O) = X 

with the finite-volume correction 

l o g  Z q ( V )  -~- fq (h )  I vI  - - 
1 

,,?r Vo 

kq(X) 

Ixn vl 
x:x or,,es I-YI kq(X) (3.17) 

Remarks. (i) For volumes of the form V=f f={Xe[~d[  _L i  
x i~  L~}, it is sometimes convenient to write the right hand side of (3.17) 
as a sum over clusters X c V. To this end, we introduce the projection 
Pr :  Rd-~ V, where Pz(x)  has components 

f xi if [xi] <~ L i 
(Pr ( x ) )~=  L i if Xi>  Li 

- Li if x i < - -  L i 

(3.18) 

For X c V, we then define 

kq, v(X)- IXl kq(X') 
2 ix=l X': X -  Pv(X') 

(3.19) 

leading to 

log Zq( V) + fq(h) I VI = - ~', 
X:X~ V 

X~aVv~ O 

kq, v ( X )  (3.20) 
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(ii) Let V be a rectangular volume of the form considered in (i), and 
let V~ = V be an arbitrary subvolume. Then 

l o g  Zq( V 1 ) @ fq( h ) I V  1 [.~- - -  

m 

IXc~ V~l 
121 kq, v( X )  x : x ~  v 

Xc~OVl ~ 0 

(3.21) 

4. CLUSTER EXPANSION FOR THE EXPECTATION 
VALUES (-)+ 

In order to derive a cluster expansion for ( . ) q ,  q = + ,  we first con- 
sider the unnormalized expectation values 

v Zq( A ; V) = Zq( V ) (  A ) q (4.1) 

of local observables A. As before, the spin configuration s,i is uniquely 
defined by the corresponding contours Y~ .... , Y.. Let d = Z a/2 denote the 
set of sites on which the local observable A depends: A(s)= A({sx}x~,), 
and let supp A = U x ~ , c ( x ) .  Observing that only those contours which 
surround or intersect the set ~r can influence the value of A, we group all 
contours Y~ with V(Y~) c~ supp A -r 0 into a new "contour" YA, and intro- 
duce the sets 

supp YA= U suppY, v(YA)= 0 v(Y) 

Int Ya = V( Ya)\supp Ya and Ext YA = V\V(Ya) 

as well as 

Int(~ Y a = Int Ya\supp A and Ext(~ Ya = Ext Ya\supp A 

As usual, IntmYa is the union of all components of Int YA which 
have boundary condition m, In tmYA=Int  YAh Vm, while Int(m~ 
Int (~ Y ~  Vm. Notice that YA may be the empty set, in which case 
Int Ya = ~ and Ext YA = V. 

Recalling that A depends only on those contours for which V(Y) c~ 
supp A 4= ~ ,  we define 

n r 

PA(YA)=A(YI, ..., Y") e-~+ Iv+~"PPAle-~- Iv-~"PPAI l-I P(Yk) 
k = l  

(4.2) 
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where Y],..., Y~,, are the contours in YA- Fixing now, for a moment, all 
contours Y~ in (4.1) for which V( Y~)c~supp A 4= ~ ,  and resumming the 
rest, we obtain 

Zq(A; V)= ~ Pa(YA) Zq(Ext(~ Ya) 1-I Zm(Int(m ~ YA) (4.3) 
YA m--+l 

Introducing 

Kq, A( YA) =PA( YA) eeqlsuppAI Zm(Int(m~ Ya) 
1F-[ Zq(Int~ ) YA) (4.4) m----q-l 

we further rewrite (4.3) as 

Zq(A; V) = ~f" Kq, a( Ya) e-eqlsupPAIZq(Ext(~ YA) Zq(Int(~ YA) 
r~ 

(4.5) 

Using finally the representation (3.7) for Zq(Ext (~ IrA) and Zq(Int (~ YA), 
we get 

gq(A; V).=e-eq Ivl E Kq, A( YA) E f i  Kq( Yk) (4.6) 
rA {rt ..... r.} k=~ 

Here the second sum goes over sets of non-overlapping q contours 
Y~,..., Yn, such that for all contours Yi, the set V(Y;) does not intersect the 
set supp Ya w supp A. 

In order to make the connection to the standard Mayer expansion for 
polymer systems, we now introduce G( YA, Y~ .... , Y,) as the graph on the 
vertex set { 0, 1 .... , n} which has an edge between two vertices i>~ 1 and 
j >t 1, i 4: j, whenever supp Y~nsupp Yj-r ~ ,  and an edge between the 
vertex 0 and a vertex i ~ 0 whenever V(Y~) c~ (supp YAw supp A) 4: 0. 
Implementing the non-overlap constraint in (4.6) by a characteristic func- 
tion q~( Ya, Y~,.-., Y,,) which is zero whenever the graph G has less than 
n + 1 components, the standard Mayer expansion for polymer systems (see, 
for example, [ Sei82 ] ) then yields 

( A ) q =  Zq(V) =,,=o YA r'~, .... r. nW. Kq.A(YA) k=l Kq(Yk) 

(4.7) 

In terms of the graph G( Ya, Y1 ..... Y,,), the combinatoric factor ~bc( YA, 
Yl ..... Y,,) is again defined by (3.12). It vanishes if the graph G( Ya, 
Y~,..., Y,,) has more than one component. 
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As before, it is convenient to resum this expansion in terms of clusters. 
We define an A-cluster as a set XA c R a that is a union of finitely many 
clusters and has connected components X with V(X)~ supp A 4: 0, and its 
weight kq, A(XA) as 

" E n 1 kq A( X'A ) "- Z Z '  ~c( YA , rl  ..... Yn) " n[ Kq, A(YA) H Kq(Yk) (4.8) 
, , = o  r~ ,r~  ..... Y. k f t  

where the sum Z '  goes over all sequences YA, Yl,..., Y, with supp[ Y]A w 
supp Y~ w . . .  w supp II, = Xa. With these definitions, we get 

( A ) : - -  ~ kq, A(XA) (4.9) 
xA 

where the sum goes over all A-clusters XA in V that do not touch the 
boundary 0 V of V. 

Remarks. (i) Note that our definition of A-clusters implies that XA 
may be the empty set. In this case, kq, A(YA)=A(g(q)), where g<q) is the 
ground state introduced before equation (3.1). 

(ii) Using the representation (3.17) for Zm( Int<~ YA) and Zq("lntm'(~ Ya) 
and the fact that Re f+  = Re f _  in the coexistence regime to estimate the 
ratio of partition functions in (4.4), and using the bound (2.7) together 
with the coexistence condition to estimate IRe e+ - Re e_ 1, one gets the 
bound 

lYe, A( YA)I ~ IIAII e~ lsuppAle-(r-~ lYal 

where IIA 11 is the L oo norm of A and 

(4.10) 

IYAI = ~ Isupp YI ( 4 . 1 1 )  
Ye YA 

As a consequence, k q, A(YA) obeys a bound of the same form, 

Igq, A( YA)I ~ IIAII e~ IsuppAle -(~-~ IrAI (4.12) 

and 

[(A)qV[ ~< [[A[[ e ~ I~ppAI (4.13) 

uniformly in V. 
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5. INTERFACES, WALLS, AND SURFACE TENSION 

In this section, we analyze the partition function Z + _ ,  giving, in par- 
ticular, a convergent low-temperature expansion for the surface tension 

1 Z+_(A(Lj.,L)) 
a =  --L--. o~lim L.L '*~176 Ld "'" i log x/Z+(A(L• L)) Z,(A(La., L)) (5.~) 

where A(Lj., L) is defined in (2.15). For the standard Ising model with real 
fl>> 1, such an expansion was first derived in [Ga172] and [Dob72]. The 
methods presented here are an adaption of the expansions developed 
in [BF85] and [HKZ88] (see also [BI92], Section 5) to models with 
complex contour activities 

Throughout this and the following section, A, A o o, V and Voo will 
denote the volumes 

A=A(L•  {x~Za/: I Ix,l < L . ,  Ix, I < L  Vi~>2} 

A~--)lo~(L)={x~7/d~/2I Ixil < L  Vi~>2} 

V= V(L• {x~ Rd I Ix,I <Lj_ + 1, Ix, I < L +  1Vi>~2} 

v~  = V ~ ( L ) =  {x ~ R ~ I Ix, I < L + 1 Vi>~ 2} 

(5.2a) 

(5.2b) 

(5.2c) 

(5.2d) 

Consider a configuration s j  contributing to Z+_(A) and the corre- 
sponding set F separating the regions where sx= + 1 from the regions 
where s ~ = -  1. The set F now consists of one component supp S whose 
boundary lies in 0V: 0supp S =  {x~OV:x~=O}, and a finite number of 
components supp Y~ .... , supp Y, which do not touch O V. As before, we 
define the contours Y~,..., Y, corresponding to the configuration s~ as 
the pairs Yi=(supp Y~, 0c~(.)), where ~ is an assignment of a label 
oci(c(x)) = sx to each cube r that touches supp Y~. In a similar way, the 
interface S is defined as the pair S = (supp S, 0Cs(. )), where again 0Cs is the 
assignment of a label OCs(C(x))=s ~ to each cube c(x) touching supp S. 

Defining p(S) in the same way as p(Y), see Eq. (3.1), we get the 
analogue of Eq. (3.3): 

e-n(.., +-)=e-~_ ,v_l-~+ IV§ fi  p(y~) (5.3) 
i----1 

where ee are given by (3.2) and V• = V• Yl,..-, Y,) are the regions 
where s x = + 1. Furthermore 

p(S) ~< e -  ~ Isupp sI ( 5 . 4 )  



Dobrushin States for Complex Interactions 911 

As a consequence of (5.3), we have the analogue of (3.4): 

n 

Z+_(A)- Z e-e_ ,v_l-~+ ,V+jp(S) I-I p(Y~) (5.5) 
is.Y, ..... Y,} i=l 

As before, we will identify Z+_(V) as Z+_(A) if V= V(A). Resumming 
the contours Y~,..., Y,,, this leads to the expression 

Z+_( V) = ~ p(S) Z+( V+(S)) Z_( V_(S)) (5.6) 
S 

where Vq(S) is defined as the union of all components of V\supp S that 
carry the label q, q = +_ 1. Note that Vq(S) consists of one component that 
touches the boundary of V (we denote this component by ExtqS), and 
possibly several components that are entirely bounded by supp S (we 
denote the union of these components by IntqS). 

Extracting a factor p(So) ~/Z+(V) Z_(V) from Z +_(V),  where So is 
the minimal interface compatible with the boundary conditions G (+-),  

suppSo={X~Ra[xl=O, [xi[ ~ L +  1Vi>~2} 

we rewrite (5.6) as 

Z+_( V)=p(So) x/Z+(V) Z_( v) 2+_(v) (5.7) 

where 

2+_(v) = ~ z+(v+(s)) z_(v_(s) )  p(S) 
s , / z + ( v ) z _ ( v )  p(So) (5.8) 

Equation (5.8) gives 2 + _ ( V )  as a sum over interfaces with a priori 
weight p(S)/p(So) and an interaction in terms of a ratio of partition func- 
tions. In order to analyze this interaction, we will use the expansions (3.20) 
and (3.21) to write the interaction in terms of clusters which intersect the 
interface S. We introduce the sets 0 • V = { x ~ 0 V I + x~ > 0}, and rewrite 
the expansion (3.20) for log Zq(V) as 

log Zq( V) = -fq(h) l V l -  ~ kq, v(X) 
X:X~ V 

g ~ O v ~  

= -2fq(h) iVq(So)l- Z kq. v(X) 
X: X(~ O+ Vv~ 

kq, v (X) -  ~ kq, v(X) (5.9) 
X: ~c~ O+ I,'= (2J X: ~c~ O+ V ~  0 

_ 

Xr~O_ V~ ~ Xr~O_ V= O 

822/89/5-6-2 
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where we have used that I v• = I{x~ Vl ~x~ >0}1 = l  IVl. Using the 
symmetry under reflections at the X l - - 0  plane, we therefore get 

�89 log Zq( V)=  -fq(h) I Vq(So)l 

1 - ~  ~ kq, F ( X ) -  ~ kq, v(X) (5.10) 
X: ~ta O+ V# 0 X: ~'ta Oq V# 0 

where - q  = + 1 if q = -  1 and vice versa. 
For logZq(Vq(S)), we use the fact that OVq(S)=suppSwaqV to 

rewrite the expansion (3.21) as 

log Zq( Vq(S)) = -fq(h) l Vq(S)l - ~ I x n  Vq(S)l kk v(X) 
x= v. x~,ov.(s>,, ~ IXl ' 

= - fq (h)IVq(S) l -  ~ IXc~ _Vq(S)[ kq v(X) 
X :  V: JTo  supp  S # 0 IXI ' 

IX{~ Vq(S)l kq. v(X)  ( 5 . 1 1 )  - Z jxj 
X ~  V: ~ s u p p  S -- 0 

For X c V, the two conditions X c~supp S =  ~ and X('~OqV:] [= ~ imply 
that X c~ O_q V = ~5 and X n Vq( S ) = X c~ V = X. Thus 

log Zq( Vq(S)) = - f q ( h )  l Vq(S)l  - Z I X ~  V q ( S ) l  kq v(X') 
IXl ' X ~ V: �9 ea s u p p  S :# 0 

E 
X ~ V: ~ ~ s u p p  S = 0 

77c~ O. V#  0 

kq, v (X)  

= -fq(h)  lVq (S ) l -  Z 
X~ V: ~ Oq V# 0 

kq, v (X)  

+ I 
X ~ V: ~ & supp  S # 0 

Xc~  O_a V #  0 

Z 
X ~ V: X ra s u p p  S # 0 

kq, v(X)  

I x n  Vq(S)l 
IXl 

kq, v (X)  (5.12) 
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where we have used inclusion-exclusion in the second step. Combining 
(5.8) with (5.10) and (5.12), we get the representation 

~ p(S) eaF(s) + wv(s) 
z +_( v) = Z p( So) 

S 
(5.13) 

where 

~F(S) = f +(h) ~ +(S) + f _(h) a_(h) (5.14) 

Z] q(S) "- I Vq(So) I - I Vq( S ) l  (5.15) 

while Wv(S) is a sum over clusters X that intersect S, 

1 
m v ( s )  - 2 _ Z kq, V ( X )  "~-'~ 

q = + 1 X ~ V: X n supp  S :~ 0 

~c~  a _ q  V #  0 

l kq, V (X)  

Xc~O_ V~ O 

tXn  5(S)l E kq v(X))  (5.16) 

\ 

X = V : R ' ~ s u p p S ~  IXl " / 

Introducing the notation X. - .  S for a cluster X with X c~ supp S-r ~ ,  
we get a representation of the form 

Wv(S)= ~ kv(X, S) (5.17) 
X.-. S 

where kv(X, S) is an activity which, by (3.15), decays exponentially with 
the size of X, 

Ikv(X, S)I ~< e - ( ~ - 0 ( 1 ) )  IXI (5.18) 

L e m m a  5.1. Let d f> 2 and Re f §  (h) = Re f_(h) .  Then there is a 
constant ro < ~ such that the limit 

Z+_(Voo)=  lim Z+_( V(L.t., L)) 
/-.,_t. -+ oo 

(5.19) 

exists and is equal to 

~ p(S) eae(s) + re<s) 
z+_(  v~) = E p(So) 

S 
(5.20) 
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provided r i> to. The sum in (5.20) goes over all finite interfaces in Voo, and 

W(S) = ~ k(X, S) (5.21) 
X~-.  S 

where 

k(X, S ) =  lim kV(L• , S) (5.22) 
L.k ---, r 

Proof. Let us first observe that the number of connected clusters 
X.--, S that have size [XI = s  is bounded by [supp S] times a geometrical 
constant to the power s. Thus, by (5.18), the sum in (5.17) is absolutely 
convergent, giving the bound Wv(S)<~O(e-')Isupp S[. Since, on the 
other hand, 

A+(S)+A_(S)=O (5.23) 

and Re f§  (h) = Re f _  (h), we have 

leaF(s) + wv(s)[ = [eW~(S) I <~ eO(~ -') [supp S[ (5.24) 

uniformly in L• Inserting (5.94) into (5.13), and using (5.4), this gives 
absolute convergence uniformly in L• By dominated convergence, it is 
therefore enough to show convergence term by term, i.e. convergence of 
Wv(S) to W(S). This, in turn, immediately follows from the uniform con- 
vergence of the cluster expansion (5.17). 1 

Given therepresentation (5.20), we now expand e ms) about 1. To this 
end, we define the set 

•  (5.25) 

and rewrite e w(s) as 

eY(S)= I-I ek(X'S)= Z 1-I (ek(x 's)- l )  (5.26) 
X*-~ S X = X ( S )  Xe X 

For each X, we then decompose the set U { Y[ Y~ X} into its connected 
components X~ .... , Xm, leading to the expansion 

eW(S)= ~ I-I z(Xg, S) (5.27) 
{x~ ..... x,.} i 
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where 

z(X, S ) :=  ~ (e k (x ' s ) -  1) 
x : x = ~ { r l r ~ x }  

(5.28) 

which, by (5.18), decays exponentially in the size of X: 

Iz(X, S)I ~< e - ( ' -  ~ txl (5.29) 

Inserting (5.27) into (5.20), we get 

m 

Z+_(  Voo) = ~, ~ p(S) ea~S ) I-I z(Xj, s )  
s {x~ ..... x~) p(So) j=t 

(5.30) 

where the second sum goes over all sets of clusters X~,..., X,,, such that 
Xi ~ S for all i and Xi q-~ Xj for all i:~ j. 

In order to continue, we need some notation. We refer to the direc- 
tions parallel to So as horizontal, and to the direction orthogonal to So as 
vertical. We define n as the orthogonal projection from Voo onto supp So, 
n ( x ) = ( 0 ,  x2,..., Xd), and h(x) as the height of a point x~ R a, h ( x ) = x l .  
Finally, we say that p is a plaquette in an interface S if p c supp S is the 
face of a unit cube c(x) with center x ~ Z d 1/2" 

Given an interface S and a set of clusters { Xl .... , Xm} connected to S, 
define the decorated interface S d~ as the pair (S, { Xl ..... Xm} ), and the set 
supp S d~ as supp S ~ = supp S w X~ w ... w X,,,. We say that p is a pla- 
quette in S d~ if p c supp S d~. We say that p is a simple plaquette in S d~ 
if p is parallel to So and if p is the only plaquette in S d~ that has the 
projection n(p). A plaquette p in S d~ is called exited if it is not simple or 
if it is touched by a plaquette in S d~ that is not simple. 

Let C~,..., C, be the connected components of the set of excited pla- 
quettes in S d~, and let Pi = n(C~) be the corresponding projections onto So. 
We then define the decorated walls of S d~ as the triples W~= 
(suppsWi, 0Cw, Xw,), where suppsWi is the union of all plaquettes p c S  
with n ( p ) c P i ,  Xw, is the set of all clusters X~ {X~ ..... X,,,} that project 
onto P~, and ~w, is an assignment of a label ~w,(C)= 0Cs(C) to each cube c 
that touches S and projects onto P~. The set C~ is called the support 7 of W~, 
and n(Wi) is defined as n(Ci). The fiat pieces Fl ,..., Fk of S d~, on the other 
hand, are defined as the connected components of the set of unexcited pla- 
quettes in S d~. A plaquette p in a decorated wall W (in a flat piece F)  is 
called a boundary plaquette of W (of F),  if n(p) is connected to c3n(W) (to 
an(F)).  The height of a plaquette is the height of its center. Finally, we say 

7Note that Ci=supp s W~wU {X[ X~Xw,}. 
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that W is a decorated wall if there exists a decorated interface S d~r such 
that W is a decorated wall of S d~r 

Remark.  Following [Dob72] ,  we have defined the notion of excited 
plaquettes in such a way that two boundary plaquettes P w and PF of 
a decorated wall W d~r and a fiat piece F have the same height if n(pd~r 
and zt(pe) are connected. Therefore the decorated interface S d~r can be 
reconstructed uniquely from its decorated walls W~ ,..., W,. We express this 
fact by writing S d~r = sd~r W~ ,..., W,) if S d~r is a decorated interface with 
decorated walls W~ ..... W,,. 

In order to derive an  expansion for the surface tension a, we need 
some facts about the geometry of the decorated interface S d~ and its 
decomposition into decorated walls and fiat pieces. We call a translation 
tt~): Voo ~ Voo, t t ~ l ) ( x ) = x + ( s ,  0 .... ,0)  a vertical translation by s. For a 
set C in Voo, we use [ C] to denote the equivalence class under vertical 
translations, 

[ C] = { t~ ] ~' = t~ ~)(C) for some s ~ Z} 

If S d~r is a decorated interface with decorated walls W~ ,..., W,,, we call the 
equivalence classes [ W~],..., [ W,,] the "floating decorated walls" of S. 
Given two decorated walls W, W, we say that [ W] and [ if:] are com- 
patible, if n(W) and rc(l~) are not connected to each other. With this 
definition, the floating walls [ W~ ] ..... [ IV,] of a decorated interface S are 
pairwise compatible. 

The following lemma is an immediate consequence of the fact that two 
boundary plaquettes P w  and PF of a decorated wall W and a flat piece F 
have the same height if n(Pw) and lt(pF) a r e  connected, see the remark 
above. The necessary geometric constructions are identical to those in 
[Dob72] and are not repeated here. 

Lemma 5.2 [ Dob72 ]. Let d i> 3, and let { [ W~ ] ..... [ IV,] } be a set 
of pairwise compatible floating decorated walls. Then there is exactly one 
decorated interface S d~r = Sd~C([ Wl ],..., [ IV,]) with [ W1 ] .... , [ W,,] as its 
floating decorated walls. 

Consider now a decorated interface sd~r {X~ .... ,X,,,}) with 
decorated walls W~ ,..., W,,. For We { W~ ..... IV,}, let S rv be the pair S rv = 
(supps W, ~w). By our definition of excited plaquettes and the fact that the 
interaction terms 2.4 1-'lx~.4 s,, in (1.2) are zero once the diameter of A is 
greater than 1, the weight p ( S )  of the interface S factors into a product 

?1 

p(S) = p(So) [I p(s~,) (5.31) 
i = l  
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where p(Sw,) obeys the bound 

Ip(S~)I ~< e -~(Isupps Wt[ -- I ~ ( s u p P s  I,V,)I) (5.32) 

Here r is the constant defined in (2.6) and Izr(supps Wi)l is the ( d - 1 ) -  
dimensional area of zr(supps Wi). Note also that 

n 

~F(S( W,,..., W,))= ~ ar(s([ Wi])) 
i----I 

(5.33) 

where S([ Wi]) is the interface which has [ Wi] as its only floating wall. 
Defining the weight z(W) of a decorated wall W= (supps W, 0~rv, X w) as 

z(W) = p(Sw) e aas(twl)) 

we therefore obtain the decomposition 

I-I z(X, Sw) (5.34) 
X ~ X  W 

m f i  p(S) eaF(s) l--I z(Xj, S)= z(Wi) (5.35) 
p(So) j=~ ~=~ 

for the weight of a decorated interface S a~ = (S, { X 1 . . . .  , Xm} ) with decorated 
walls Wl ,..., W,,. 

Remarks.(i) It is easy to see that z (W)=z(W')  if W=t(1)(W') for 
some s e 7/. As a consequence, z(W) is actually well defined on the equiv- 
alence class [ W], 

z (W)=z([W])  (5.36) 

(ii) For a decorated wall W=(supps  W, O~rv, ~w),  let 

Then 

I WI = Isupp WI + Y', IXI (5.37) 
X r  X n, 

[z( W)[ ~< e -(~-~ <~ e - ( ' -  ~ "(a) irvl (5.38) 

where the first inequality follows from (5.18), (5.32) and the fact that 
Re AF(S)= 0 for all interfaces S, and t ( d ) >  0. 



918 Borgs et  al. 

Combining Lemma 5.2 with the decomposition (5.35) we obtain 2 + _  as a 
sum over sets { [ Wl ],..., [ W, ] } of pairwise compatible floating decorated walls, 

( f i  z([ W,]) I (5.39, 2+_(v~o)= 
{Cry  t ]  ..... t r y . i }  ~ffi~ \ / 

In the form (5.39), Z+_(Voo) is the partition function of a hard-core 
interacting polymer systems over the flat interface So. Its logarithm can 
therefore be analyzed by the usual Mayer expansion for polymer systems, 
leading immediately to an expansion for the interface tension a, see equa- 
tion (5.1). Note that the Mayer expansion for log 2+_(Voo) is absolutely 
convergent due to the bound (5.38) and the fact that the number of walls 
W with [W[ = s that are incompatible with a given wall I~" is bounded by 
[I~'[ times a geometrical constant to the power s. 

6. CLUSTER EXPANSION FOR THE STATES ( . ) + _  

In this. section we derive a cluster expansion for the expectation value 
( A )  + _, where A is a local observable with support d = 7aa, and use this 
to prove Theorem 2.2. As before, we take supp A = Ux~ , .  Without loss of 
generality, we assume that supp A is a subset of V that does not touch its 
boundary. At this point, we will not assume, however, that supp A is a 
connected set. 

It is again convenient to consider unnormalized expectation values; 
here we define two such quantities, 

z+ (A. V ) = Z + _ ( V ) ( A )  ~" _ , + _  ( 6 . 1 )  

and 

2+ (A" V)=2+_(V) (A)  V ~ =l=~ (6.2) 

Given a configuration s~ contributing to (6.1), we define the interface 
S and the contours Y~,..., Y~v corresponding to sa as in Section 5. As in 
Section 4, we then group all contours Y with V(Y) c~ supp A ~ - ~  into a 
new contour YA with supp YA = U re rA supp Y. Resumming the remaining 
contours, and defining Vq(S, YA) as the union of all components of V\ 
(supp S w supp YA) with label q and V~q~ YA, S) as V~q~ YA, S ) =  
Vq( YA, S)\supp A, q = + 1, we obtain the representation 

Z + _ ( A ;  V)= Z PA( YA, S) 1-I Zq( V(q~ YA, S)) 
s,r A q=• 

-- ~ Ev(A I S) p(S) 1-I Zq( Ve(S)) 
S q---+l 

(6.3) 
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where 

Ye Y A q= -I-1 

and 

e -eqlsuppA~vq(YA'S)l (6.4) 

Ev(A I S)= ~ A( Ya, S) ( I-- I p( Y) ) 
YA" supp YA ~ supp S # 0 Y r Ya 

X 1-I Zq(V(q~ S) )  --eqlsuppAnVq(YA S)I e ' (6.5) 
~= • z~( v~( s )  ) 

Extracting the factor p(So) ~/Z+( V) Z_( V) from (6.3), we obtain the 
representation 

V) --  ~-~,/'~ 19(3) I-I Zq(Vq(S)))\ Ev(A IS) (6 .6 )  2+_(A; 
x p(So) q - + ,  J Z q ( V )  

for the modified partition function (6.2). 

Remark. Combining (6.2) and (6.6), the expectation value ( A )  v 
can be written in the form 

(A) +_v =~ Pv(S) Ev(A I S) 
S 

If the weights Pv(S) were positive, it would be straightforward to control 
( A ) V  �9 The expansions of the last section yield bounds on the + -  

p r o b a b i l i t i e s  Pv(S), and the standard cluster expansions yield bounds on 
the difference between Ev(AIS) and ( A )  v Here, due to the complexity + .  

of the weights Pv(S), we have to follow a different route, which we now 
describe. 

In order to analyze the conditional expectation values E v(AIS), we 
use the methods sketched in Section 4. We again consider unnormalized 
expectation values, 

Z(A; VI S)--Ev(AIS)Z+(V+(S))Z_(V_(S)) (6.7) 

Defining the conditional activities 

PA( YA I S) = A( YA, S) ( r~  p( Y) ) I-I 
q = + l  

e - e q  I~upp A ~ v~( Y~, s)l ( 6 . 8 )  
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and 

Zm(Int(~ Ya c~ Vq(S))) 
KA(YAIS)=PA(YaIS) I-I eeqlsuppAC~Vq(S)l 1-[ Zq(Int~)YAc~ Vq(S)) 

q--=t=l m---- =t=1 

(6.9) 

we rewrite Z(A; V ] S) as 

z(A; V l s ) =  Z 
YA : s u p p  YA ~ s u p p  S # ~ f  

p a( Y~ I s) 1-I z.( V~q~ Y~, s)) 
q---- +_. 1 

E 
IrA : supp  YAn supp  S # 0 

pa( Y~ l S) ( 1-I 
q - -  ::t: 1 

Zq(Ext(~ a n Vq(S)) 

x( H 
q , m =  +1 

Zm(Int~)Ya n Vq(S)) ) 

Ka( Ya l S) 
YA : supp  IrA c~ supp  S # 

X H (e-eqIsuppA~Vq(S)IZq(Vs(S)\(supp YAL3supp A))) 
q - - + l  

(6.10) 

where in the second step, we first used that 

V~q~ YA, S ) = ( E  xt(~ YAn Vq(S)) 
�9 (Int~q ~ YAc~ V+(S)) �9 (Int~q ~ YAh V_(S)) 

and then interchanged the indices m and q in the second product. Inserting 
the representation (3.7) for Zq(Vq(S)\(supp Ya wsupp A)) into (6.10), we 
get 

Z(A; V [ S) = e -e+ iv+(s)l-e_ iv_(s)l 

n 

x Z Ka( Ya [ S) Z I-[ K(Yk) (6.11) 
YA: s u p p  YA ~ s u p p  S # 0 { YI ..... Yn} k = 1 

Here the second sum goes over sets of non-overlapping contours in 
V\supp S, such that for all contours Y~ { Y1,..., I,.,}, the set V(Y) does not 
intersect the set supp IrA w supp A, and 

fK+(Y)  if supp Y= V+(S) (6.12) 
K(Y) = (K_(Y)  if supp Y= V_(S) 
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Continuing as in Section 4, we get E v(AIS) as a sum over A-clusters XA 
in V\supp S that do not touch the boundary of V\supp S, 

Ev(A I S)= ~ kA(Xa l S) (6.13) 
X A = V \ s u p p  S 

where kA(XAIS) is obtained from (4.8) by replacing Ka(YAIS) for 
Kq, A( YA) and K(Yk) for Kq( Yk). 

Returning to the expansion (6.6), the weights 

p(S) Z+(V+(S))Z_(V_(S)) p(S) ea~S)+W~(s ) 
m 

p(So) ,/z+(v) ,/z_iv) p(So) 

can be analyzed by the methods of Section 5, leading to the existence of the 
limit 

Z+_(A; V~)= lim Z+_(A I V(LI, L)) 
L.I. --* oo 

p(S) s) w~s~) 

S 

(6.14) 

as in Lemma 5.1, and the representation 

Z+_(A; Voo)= ~ ( f i  z([ Wi]))Ergo(A IS) (6.15) 
{[w~] ..... [w.]} ~=l 

where the sum goes over sets {[ W~],..., [ HI,] } of pairwise compatible 
floating decorated walls and S = S([ W~ ] ..... [ W,]), as in Eq. (5.39). 

Inserting finally the expansion (6.13) for Evoo(A IS), we get 

Z+_(A; Voo)= Z Z ka(XalS) f i  z([Wi]) (6.16) 
{ [ W I ]  ..... [ W n ]  } X A = V o o \ s u p p S  i ---1 

where S =  S([ W1 ],... , [ Wn] ). 
At this point, we define [ W] *-~ Xa iff zc(W) intersects or surrounds 

the projection of Xa w supp A. Observing that ka(XalS) depends on S 
only via the walls W with [ W] ,--, Xa, we define a decorated A-wall as a 
pair WA = (X A, { [ W1 ],..., [ W,, ] } ) where Xa is an A-cluster and { [ W~ ],..., 
[ W,,] } is a set of pairwise compatible floating decorated walls such that 
[ W] ~ Xa for all [ W] s { [ Wt ] .... , [ W,,] }. We say that a floating wall 
[ W] and a decorated A-wall Wa = (Xa, { [ W1 ] ..... [ W,,] } ) are com- 
patible if { [ W], [ W1 ] .... , [ W,,,] } is a set of pairwise compatible floating 
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decorated walls, and if [ W] q-~ XA for the A-cluster Xa in WA. Defining 
the activity of a decorated A-wall WA = (XA, { [ WI ],..., [ W,,,] } ) as 

zA(WA)=k~(XAIS([ W,] ..... [ Him])) 

we get 

I-I z([ w ] )  (6.17) 
irv3~{crv I] ..... cry,,]} 

Z+_(A;  Voo): Z Z za( WA)( f i  z([ IV/I))  (6.18) 
w A {CrV~] ..... [rv,]} i=~ 

where the first sum is over decorated A-walls, and the second is over sets 
of pairwise compatible floating decorated walls that are all compatible 
with WA. 

Defining the graph G( WA, [ WI],..., [ IV,]) as the graph on 0, 1,..., n 
that has a line between 0 and i, i = 1,..., n whenever W.4 q-~ [ Wi], and a line 
between i and j (i, j = 1 .... , n) whenever [ Wi] and [ Wj] are not compatible, 
the c6mpatibility constraint on the right hand side of (6.18) can be 
implemented by inserting a factor G( WA, [ WI],..., [ IV, I) which is zero 
whenever G( WA, [ Wl] ..... [ W,,]) has less than n + 1 components. In the 
same way as the representation (4.6) gives the cluster expansion (4.7), our 
representation (6.18) now gives the cluster expansion 

oo 
(A) +_v| = ~ ~ ~ ~c(WA) [ Wl]n! . . . .  ' [ Wn]) za(WA) 

n=o rv~ [rv,] ..... Crv.] 

x ( f i  z([ W i ] ) )  (6.19) 
i-----1 

where ~bc(WA), [ W~ ] ..... [ IV.]) is obtained from G( WA, [ W~ ] ..... [ IV,]) 
via (3.12). 

Remark. As a consequence of the bounds (4.12) and (5.38), we have 

IzA( WA)[ ~ IIAll e ~ [supp A[ e-~,-O~l))~lrvAl-I,,~rv.~)l) (6.20) 

where the size I WAI of a decorated A-wall Wa = (X a, { [ Wl ] ..... [ W,,,] } ) is 
defined as 

m 
IW~l =lX~l + Z IW, I (6.21) 

i=1 
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with IXAI given by (4.11) and I W~l given by (5.37). Using the bound 
(6.20), one easily shows absolute convergence of the expansion (6.19) 
uniformly in L (recall that Voo = V~o(L), see (5.2d)). 

Theorem 2.2 (i), and the exponential clustering for the directions 
parallel to So immediately follow from the convergence of the expansion 
(6.19). we are therefore left with the proof of Theorem 2.2 (ii), and the 
proof of exponential clustering in the direction orthogonal to So, i.e. the 
proof of (2.19) for translations t~ 1) in the 1-direction. In order to prove 
these, we slightly modify our expansion. Starting with the proof of 
Theorem 2.2 (ii), assume that A is an observable with supp A ~ V+(So). 
We define 

2 = A - < A >  v~ + (6.22) 

so that 

(A)voo -(A)V~o=(2)v= 
+ - -  + + - -  (6.23) 

Combining the expansion (4.9) for (A)v~  with the expansion (6.13), we + 

then get 

Evo~(A ] S) = Evoo(A I S ) - ( A )  v~+ 

ka(Xa l S)-  ~ k+,A(Xa) (6.24) 
X A = V o o \ s u p p  S X a = Voo 

Observing that if (XawsuppA)c  V+(S), then also Int(~ V+(S), 
which together imply ka(XalS)=k+,a(Xa),  we get the representation 

Evoo(AlS) = ~ Tza(Xa [ S) (6.25) 
XA: ( X  A u s u p p  A) 9: F'+(S) 

where kA(XaIS)=ka(XAIS)--k+,A(XA) if 
kA(XAIS)---k+,A(X'a) if Xa r Voo\supp S. 

Next we decompose (A)v~  into two terms 
4 - - -  

Xa c V~\supp S and 

( ~ )  v~ =EV~o,(l)(~)+EV~o,(z)t~) (6.26) 

where 

Voo) 
Z+_(Voo) 

(6.27) 
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with 

22k(2; zoo)= p(S) ea~S)+ ms))Ev| (6.28) 
Z p(So) 

S: supp A = V+ ( S )  

and 

- / eA~S)+mS)JE IS) (6.29) 
S: supp A r V+(S)  

Inserting the expansion (6.25) into (6.28), we get a sum over A-clusters 
XA that contain at least one component X with X c~supp S :/: ~ and 
V(X) c~supp A :/: ~ ,  where the latter condition follows directly from the 
definition of A-clusters. The expansion (6.19) for EV| therefore only + -  

c o n t a i n s  decorated A-walls WA = (XA, { [ Wl ] ..... [ W,,,] } ) for which Xa 
contains a component that is connected to the interface S([ Wt ],..., [ W,,,]). 
As a consequence, the sum over WA only goes over decorated A-walls WA 
with [WAl-]rr(Wa)l>~dist(So, suppA), which by (6.20) leads to the 
bound 

IEV~~162 ~< IIAII e ~  Isupp Al e - - (r - -  O(1)) dist(S~ supp A) 
+ - -  (6.30) 

In order to estimate the second term in (6.26), we note that the con- 
dition suppA r V+(S) in (6.29) implies that the expansion (6.19) for 
Ev|162 only contains decorated A-walls WA=(XA {[Wl]  [ W,,,]}) 
with supp A r V+(S([ W1 ] ..... [ W,,,])). As a consequence, the corre- 
sponding sum over Wa only involves decorated A-walls W a = ( X a ,  
{[ W~ ] ..... [ W,,,] }) with 

m 

(IW, I-I~(W~)I) ~> dist(So, supp A) 
i-----1 

(6.31) 

which by (6.20) and (6.21) leads to the bound 

]E v+=_. ~2)(2) ~< IIA II e ~ Isupp AI e - ( , -  o~l))dist(S 0, supp A) (6,32) 

The bounds (6.30) and (6.32) imply (2.17). The bound (2.18) is proven in 
the same way. 

We are left with the proof of Theorem 2.2 for translations tx in the 
direction orthogonal to So, tx = t~ ~). Assuming without loss of generality 
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that s is a positive integer that is chosen large enough to ensure that 
supp t~ 1 )(B) c V + (S0), we bound 

[(At~l ) (B))  v= - ( A )  voo ( t (1 ) (B) )  voo [ 
+ - -  + - -  + - -  

<~ [(At~,)(B) ) v| - ( A )  v=+_(a) +v=[ 

+ i(A) v| ( (B)  v~176 voo )l + - -  + + - -  (6.33) 

The second term decays exponentially in s due to the bounds (6.30) and 
(6.32) and the fact that [ (A)  v= [< [[AI[ e ~ Isuppal" 

I(A) v~o ( ( B )  v|  v= )l ~< Can e-('-~176 
+ - -  + + - -  (6.34) 

where CAn = ]tAII e ~ Is,pp al IIBII e O(e-') Isupp nl. Therefore we need only 
bound 

(,AB) v= = (At(1)(B)) voo - ( , A )  voo ( B )  voo 
+ - -  + - -  + - -  + (6.35) 

where 

9 = t~')(8)-  ( B )  ~+ (6.36) 

Again, we first analyze the conditional expectations Ev| S), which we 
rewrite as 

Evoo(AB I S)= Ev~(At(~')(B) I S ) -  Ev=(A I S ) ( B )  voo+ 

=Ev| t(~)(B) I S)+ Ev| I S) Ev~o(B I S) (6.37) 

where Evoo(A; t(I)(B)[S) denotes the "truncated conditional expectation:" 

Evoo(A; t~)(B) I S)=Evoo(At~)(B) I S)-Evoo(A I S) Evoo(t~)(B) l S) (6.38) 

It follows from the decomposition (6.37) that 

voo, (b)( A voo, (AB)  v= =EV~176 B)+E B)+E (*)(A,B) + - -  + - -  ) + - -  ~ ~- + _  (6.39) 

where 

EV~(O(A, ~ ) =  2~)_(A;_ B; Voo) (6.40) 
z+_(voo) 
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with 

(p(S) eaF~s) + rv(s)) Ev=(A; t~)(B) [ S) (6.41) 
S 

p(S) ea~S)+ mS)) Ev| I S) Ev~(B I S) 2 L(A, v)= Z p(So) 
S: supp/~= V+(S) (6.42) 

and 

2~)__(A, B; V)= Z 
S: supp ~ q: V+ (S) 

p( S) eA~S ) w<s)) p(So) + Ev~(A I S) Ev~(B I S) 
(6.43) 

The rest is straightforward: Defining an AB-cluster XA~ as a union of 
finitely many clusters X with V(X)c~supp A wsupp t~)(B)):/:~, and a 
decorated AB-wall as a pair WA~ = (XA~, { [ Wl ],..., [ Wm] } where XA~ is 
an A/~-cluster and { [ W~ ],..., [ Win] } is a set of pairwise compatible floating 
decorated walls such that [ W] ,--, XA~ for all [ W] ~ { [ Wt ] ..... [ Win] }, we 

v| (~) proceed as in the derivation of (6.19) to expand E +~ (A, B) as a sum 
involving decorated AB-walls. 

Starting with the expansion for EV| B), we note that the cluster + -  

e x p a n s i o n  (6.13) for the truncated expectation values (6.38) gives a sum 
over AB-clusters XA~ that have at least one component X with X c~ 
supp A ~ ~ and Xc~supp t~l)(B) ~ ~ .  As a consequence, the expansion 
(6.19) for Ev| only involves decorated AB-walls with I WA~I- -b-- k 

17~( WA~[ >t dist(supp A, supp t~ l)(B)), leading to an upper bound of the 
form 

IE v+~c~)( A, B)I ~< CAB e-(z-O(l))dist(suppA'supp t~l)(B)) (6.44) 

In order to estimate the second and third term in (6.39), we use the 
expansion (6.13) for Ergo(A IS) and the expansion (6.25) for Evoo(BIS). 
Inserted into (6.42), this gives an expansion of A/~-clusters that are unions 
of arbitrary A-clusters with B-clusters that contain at least one component 
X with X ra supp S -~ ~ and V(X) n supp t~ ~)(B) 4= ~ .  Continuing as in the 
above proof of (6.30), this leads to a bound of the form 

[E v~' cb)(A B)I ~< CAB e-(~-O(1))dist(S~ t~t)(B)) (6.45) 
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Finally, the expansion for E v~tC)(A, B) only involves interfaces S with 
supp B r V+(S), and hence only decorated AB-walls WA~ = (XA~, 
{[ W~] .... , [ W,,]}) with 

m 

(I W~I- Irt(W~)I) >t dist(So, supp t~')(B)) 
i = 1  

(6.46) 

leading to the bound 

IE v=, t~)tA, B)I ~< CAn e-t'-~ )) dist(S~ supp t]'I(B)) (6.47) 

Equations (6.33)-(6.35) combined with (6.39), (6.44), (6.45) and (6.47) give 
the desired exponential clustering in the directions orthogonal to So, and 
complete the proof of Theorem 2.2. 
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